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Abstract

We propose the end-to-end multimodal fact-
checking and explanation generation, where
the input is a claim and a large collection
of web sources, including articles, images,
videos, and tweets, and the goal is to assess
the truthfulness of the claim by retrieving rele-
vant evidence and predicting a truthfulness la-
bel (i.e., support, refute and not enough infor-
mation), and generate a rationalization state-
ment to explain the reasoning and ruling pro-
cess. To support this research, we construct
MOCHEG, a large-scale dataset that consists
of 21,184 claims where each claim is assigned
with a truthfulness label and ruling statement,
with 58,523 evidence in the form of text and
images. To establish baseline performances on
MOCHEG, we experiment with several state-
of-the-art neural architectures on the three
pipelined subtasks: multimodal evidence re-
trieval, claim verification, and explanation gen-
eration, and demonstrate the current state-of-
the-art performance of end-to-end multimodal
fact-checking is still far from satisfying. To
the best of our knowledge, we are the first to
build the benchmark dataset and solutions for
end-to-end multimodal fact-checking and jus-
tification.

1 Introduction

Misinformation has been a growing public con-
cern in society and caused serious negative impacts
on daily human life, especially making it difficult
to find reliable information online. For example,
as Islam et al. (2020) shows, the misinformation
about COVID-19 has widely spread and led peo-
ple to distrust medical treatment and even refuse
to get vaccinated. To fight against misinformation,
many fact-checking websites, such as Snopes1 and
PolitiFact2, have been created where journalists
manually collect thousands of claims from news

1https://www.snopes.com/
2https://www.politifact.com/

Figure 1: An example of end-to-end multimodal fact-
checking and explanation generation.

and social media and verify them by referring to
some reliable and relevant documents. However, it
is time-consuming and hard to generalize to more
broad claims.

In recent years, researchers from natural lan-
guage processing and computer vision have started
to investigate automatic misinformation detection
and fact-checking by developing various bench-
mark datasets (Thorne et al., 2018; Wang, 2017;
Shu et al., 2020; Nakamura et al., 2019; Pa-
padopoulou et al., 2018a) as well as start-of-the-art
neural network architectures (Tan et al., 2020; Song
et al., 2021a; Li et al., 2020; Zhou et al., 2020).
However, there are at least three limitations with
the current fact-checking studies: (1) most fact-
checking studies only consider text while ignoring
the multi-media nature of online articles. Multi-
media information, such as images, videos, and
audio, is essential and beneficial for predicting the
truthfulness of claims. (2) While current studies
simply predict a support or refute label, it’s also
necessary to provide a textual explanation to ratio-
nalize the judgment. These explanations are vital
to justify how the conclusion is reached step by
step, and the public can analyze the reasoning pro-
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cess and share it with others. (3) Last but not least,
some prior studies assume that a short piece of ev-
idence text is already identified, based on which
the models can directly predict the truthfulness of
the claims, which is not realistic in the practice of
end-to-end fact-checking.

To tackle these challenges, we propose end-to-
end multimodal fact-checking and explanation gen-
eration, where the input consists of a claim and a
large collection of web sources, including articles,
images, videos and tweets, and the goal is to au-
tomatically retrieve information sources that are
relevant to the claim (Evidence Retrieval), predict
the truthfulness of the claim based on the relevant
evidence (Claim Verification ), and generate a tex-
tual explanation to explain the reasoning and ruling
process (Explanation Generation). An example is
shown in Fig. 1. To support research in this di-
rection, we introduce MOCHEG, a new benchmark
dataset with 21,184 claims annotated with truthful-
ness labels, together with a large collection of web
sources, including 61,475 articles, 108,673 images,
903 videos, and 4,661 tweets. To set up the base-
line performance, we explore the state-of-the-art
pre-trained vision-language models for multimodal
evidence retrieval, claim verification, and expla-
nation generation. Experimental results show that
there is still huge room for future improvements
in this end-to-end multimodal fact checking and
explanation generation task. Overall, the contribu-
tions of our work are as follows:

• To the best of our knowledge, this is the first
end-to-end multi-modal fact-checking and ex-
planation generation task.

• We also create the first benchmark dataset
for end-to-end multi-media fact checking and
explanation generation. The baseline perfor-
mance of the state-of-the-art language models
demonstrate that the task is still challenging
and there is a huge space to improve.

2 Dataset Construction

2.1 Data Source
PolitiFact and Snopes are two widely used websites
to fight against the spreading of misinformation,
where journalists are asked to manually check and
verify each claim and write a ruling article to share
their judgment and sources. Considering this, we
use these two websites as the data sources. Specif-
ically, we develop scripts based on (Hanselowski

et al., 2019) to collect claims which may consist
of text and/or images, truthfulness labels, evidence
references that are relevant to the claims and help
determine their truthfulness labels, and ruling arti-
cles that explain and justify the truthfulness of the
claims and can be viewed as a short summary of
the various evidence sources. Generally, the claims
are from online speeches, public statements, news
articles, and social media platforms, such as Face-
book, Twitter, Instagram, TikTok, or some blogs.
The truthfulness labels, evidence references, and
ruling articles are provided by humans.

Based on the evidence references, we also de-
velop scripts to collect the evidence sources, which
consist of text, images, and videos. Since the evi-
dence sources are from thousands of websites with
distinct HTML templates, we use boilerplate re-
moval tools to efficiently crawl their contents. In
detail, we utilize (Kohlschütter et al., 2010) to ex-
tract text and newspaper (Ou-Yang, 2013) to get
all image links contained in the webpages of the
relevant evidence and download the images based
on urllib3. In addition, some evidence sources are
from social media, such as Twitter or Facebook. To
collect them, we first extract the Tweet IDs from the
evidence references and then apply Twitter API4

to collect the text, images, and videos from the
corresponding Tweets.

2.2 Data Preprocessing
The initial data contains more than 75 truthful-
ness labels, making it hard for machine learning
models to predict them. Given that, we refer to
(Hanselowski et al., 2019) and manually map 68
of the labels to three, including Supported, Refuted
and NEI (Not Enough Information). We remove
the claims that are annotated with other labels. In
this way, each claim is just assigned with one of
the three target labels.

The initial dataset contains a lot of advertisement
images. And some instances do not contain all in-
formation we need. To clean the dataset, we design
several rules, including: (1) remove an image if its
name contains any of the keywords, including “-ad-
”, “logo”, “.svg”, “.gif”, “.ico”, “lazyload”, “.cgi”,
“Logo”,“ .php”, “icon”, “Bubble”, “svg”, “rating-
false”, “rating-true”, “banner”, “-line” or its size
is smaller than 400*400; (2) remove a claim if we
can not crawl any evidence sources or the ruling

3https://docs.python.org/3/library/urllib.html
4https://developer.twitter.com/en/docs/api-reference-
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article. For each ruling article, there is usually a
paragraph starting with “Our ruling” or “In sum”,
which summarizes the whole ruling and reasoning
process to achieve the fact-validation conclusion,
thus we use this paragraph as the explanation.

As a result, we collect 21,184 claims from
Snopes and Politifact with 43,148 textual evidence,
15,375 image evidence, 61,475 textual articles, and
108,673 images from relevant documents.

2.3 Task Definition

We name the dataset as MOCHEG and propose the
End-to-End Multimodal Fact-Checking and Expla-
nation Generation, which consists of three sub-
tasks:

Task 1. Evidence Retrieval: Given a claim and
a collection of web sources which is created by
mixing the evidence of all claims and in the form
of text, images, and videos, the Evidence Retrieval
task is to determine which text/image/video is re-
lated to the claim, and then further extract the top-5
pieces of text and the top-5 images as the evidence
which can be used to further determine the truthful-
ness of the claim.

Task 2. Multimodal Claim Verification: As we
have retrieved the top-5 relevant text passages and
top-5 relevant images, the Multimodal Claim Veri-
fication task is to predict the truthfulness label (Sup-
ported, Refuted or NEI) of the claim. As both the
input claim and the retrieved evidence contain both
text and images, this task requires cross-modality
understanding and reasoning.

Task 3. Explanation Generation: Given an in-
put claim, the evidence retrieved from Task 1, as
well as the truthfulness label predicted from Task 2,
the goal of Explanation Generation is to generate a
short paragraph to explain the ruling process and
justify the truthfulness label.

2.4 Train / Dev / Test Split

We split the whole dataset into training, develop-
ment, and test sets. For some claims, their relevant
evidence sources or ruling outline may not be fully
collected due to the diverse HTML templates they
use. Thus we put all these claims into the training
set to ensure the high quality of development and
test sets. In addition, we also keep the truthfulness
labels of development and test sets to be balanced.
Table 1 shows the detailed statistics for each split.

Data Train Dev Test

# Claims 18,583 600 2,001
Ave. # Tokens in Claim 20 20 21
Max. # Tokens in Claim 84 58 89

# Textual Evidences 36,358 1,562 5,228
# Textual Relevant Document 56,553 2,500 6,774
# Images Evidence 13,206 519 1,650
# Images from Relevant Document 88,464 4,046 16,163

# Supported Labels 6,936 200 667
# Refuted Labels 7,137 200 667
# NEI Labels 4,510 200 667

Ave. # Tokens in Explanation 306 114 167
Max. # Tokens in Explanation 6,340 2,471 5,235

Table 1: Dataset Statistics of MOCHEG

3 Approach

Figure 2 illustrates the framework for End-to-End
Multimodal Fact-checking and Explanation Gen-
eration, which consists of three components, each
corresponding to a particular sub-task. Next, we
will describe the details of each of the components.

3.1 Evidence Retrieval

As the first step, Evidence Retrieval aims to retrieve
the relevant evidence, including textual passages
and images, from a large collection of web sources
to support the verification of each input claim. To
solve this task, we apply two baseline models from
(Reimers and Gurevych, 2019) for retrieving text
and image evidence separately.

3.1.1 Text Evidence Retrieval

The top left in Fig. 2 illustrates the approach for
text evidence retrieval. Given an input claim and
a document corpus, we first split each document
into sentences and then apply SBERT (Reimers and
Gurevych, 2019) to take in the input claim and a
sentence from the document corpus and output a
similar score. Based on these similarity scores, we
rank all the sentences and select the top-25 as the
candidate evidence. We further design a re-ranking
model based on BERT (Devlin et al., 2018), which
encodes each pair of the input claim and a piece of
candidate evidence, and outputs a score based on
a linear classification layer. Based on these scores,
we further rank all the candidate evidence and se-
lect the top-5 as the text evidence. During train-
ing, we fix the parameters of pre-trained SBERT
to select candidate evidence, and only fine-tune
the BERT-based re-ranking model and the linear
classification layer based on our own training set.



Figure 2: Overview of framework. It consists of a text retrieval module (top left), a image retrieval module(bottom
left), a claim verification module(bottom right), and an explanation generation module(top right)

3.1.2 Image Evidence Retrieval

As shown in the bottom left of Figure 2, given an in-
put claim and the image corpus, we use CLIP (Rad-
ford et al., 2021) as the encoder to learn an overall
representation for the claim and a representation
for each image, then compute the cosine similarity
between each image and the input claim. We sort
all the images in the corpus based on the cosine
similarity scores and take the top-5 as the candidate
image evidence.

3.2 Claim Verification

Based on the text and image evidences, we further
design a claim verification approach to predict the
truthfulness of each input claim, which is shown in
bottom right of Fig. 2.

3.2.1 Encoding with CLIP

We formulate an input claim as
C = {c0, c1, ..., cn}, a text evidence as
Ti = {ti0, ti1, ..., tis}, an image evidence as
Mj = {mj0,mj1, ...,mjq}, where ck denotes the
k-th word of the claim, tik is the k-th word of the
i-th text evidence Ti, and mjk is the k-th patch
of the j-th image evidence Mj . Given an input
claim C and its text evidence {T0, T1, ...} and
image evidence {M0,M1, ...}, we append claim
to the text evidence list to form a text list, then
feed this text list and image evidence list into
CLIP (Radford et al., 2021) to get their contextual
representations: HC = {hc0 ,hc1 , ...,hcn},
HTi = {hti0 ,hti1 , ...,htis}, and HMj =
{hmj0 ,hmj1 , ...,hmjq}.

3.2.2 Stance detection

We then pair each evidence with the input claim
and detect stance of the evidence towards the
claim. As Fig. 3 shows, taking text evidence as
example, we first compute an attention distribu-
tion between the claim and the evidence by us-
ing HC = {hc0 ,hc1 , ...,hcn} as query, HTi =
{hti0 ,hti1 , ...,htis} as key and value to compute
cross attention and obtain an updated claim repre-
sentation HTi2C = {hc̃0 ,hc̃1 , ...,hc̃n}.

hc̃i = Softmax(hci ·H>Ti) ·HTi

We then fuse the updated claim representation
HTi2C with its original representation HC by two
arithmetic operations, and obtain the stance repre-
sentation of evidence Ti towards the claim C based
on max pooling.

G̃Ti2C = σ([HTi2CHC : HTi2C −HC ]W a + ba)

GTi2C = Max_Pooling(G̃Ti2C)

where [:] denotes concatenation operation. W a,
ba are learnable parameters for aggregating the
representations. σ denotes LeckyReLU activation
function.

As we have multiple text and image evidences,
we further compute the average of the stance rep-
resentations of all text evidences and image evi-
dences, respectively, and concatenate the overall
stance representation from both modalities to pre-
dict the truthfulness label with cross-entropy objec-



tive.

GT2C = Mean_Pooling(GTi2C)

GM2C = Mean_Pooling(GMj2C)

ŷcls = W>
h · [GT2C : GM2C ] + bh

L(yi|C) = − log(
exp(ŷcls,i)∑2
j=0 exp(ŷcls,j)

)

where ŷcls denotes the probabilities over all pos-
sible classes, yi is the corresponding truthfulness
label of claim C.

Figure 3: Overview of Stance Detection (Taking text
evidence as the example)

3.3 Explanation Generation

To explain the prediction of the truthfulness of the
input claim, we use BART (Lewis et al., 2019) to
generate a ruling statement by considering the in-
put claim, the predicted truthfulness label as well
as the text evidence. To ensure the generated expla-
nation is consistent with the truthfulness label, we
incorporate a truthfulness reward (Lai et al., 2021)
based on a classification layer and optimize the
generation model with reinforcement learning. The
top right of Fig. 2 illustrates the overall architecture
for explanation generation.

Specifically, given an input claim C, its truthful-
ness label yC , and text evidences {T1, T2, ..., T5},
we concatenate them into an overall sequence X
with a separator </s>. Then we feed this se-
quence as input to BART (Lewis et al., 2019),
which is a state-of-the-art pre-trained sequence-
to-sequence model, and optimize BART for gen-
erating S = {s1, s2, ..., sq} close to the ground
truth ruling statement S̃ = {s̃1, s̃2, ..., s̃q}. During
training, we use the gold truthfulness label of the
claim as input, while during evaluation, we use the
truthfulness label predicted by the claim verifica-
tion model. The training objective is to minimize

the following negative log-likelihood:

Lg = −
∑
i

log(p(s̃i|s̃1:i−1, X;φ))

To ensure the generated ruling statement is con-
sistent with the truthfulness label of the claim, we
design a truthfulness reward. Specifically, we pre-
train a truthfulness classification model based on
BERT (Devlin et al., 2019), which takes the ruling
statement as input and outputs a confidence score
for each candidate’s truthfulness label. We use the
difference between the confidence score of the cor-
rect truthfulness label and the confidence score of
the wrong truthfulness labels as the reward Rcls
and apply it for policy learning.

p(ỹ|S) = Softmaxi(classifierθ(S))

Rcls = p(ỹC |S)−
∑

ỹj !=ỹC ,ỹj∈{0,1,2}

p(ỹj |S)

∇φJ (φ) = E[λ ·Rcls · ∇φ
∑
i

log(p(si|s1:i−1, X;φ))]

where ỹC is the gold truthfulness label of C, S is
the generated explanation, λ is a coefficient weight
for the reward, X is the concatenated sequence of
claim, truthfulness label and text evidences, and φ
are the model parameters.

4 Experiments

4.1 Evidence Retrieval
We build the text and image corpus by combining
the relevant articles and images of all claims in
respectively. For each claim, we retrieve the top-5
text and image evidence from the corresponding
text and image corpus. To evaluate the retrieval
performance, we refer to (Thorne et al., 2018;
Hanselowski et al., 2019; Nie et al., 2019) to mea-
sure the Precision, Recall, and F-score of on five
highest-ranked sentences or images. These scores
are computed in a BERTScore-like (Zhang et al.,
2019) manner. In detail, the precision of each
retrieved evidence is based on the highest simi-
larity between the retrieved evidence and all the
gold evidence, while the similarity is measured by
SBERT (Reimers and Gurevych, 2019) and cosine
similarity. The overall precision is computed by
the average precision of all the retrieved evidence.
Similarly, the recall of each gold evidence is based
on the highest similarity between the gold evidence
and all the retrieved evidence, and we use the aver-
age recall of all gold evidence as the overall recall.



Dataset Media re-ranking? Precision Recall F-score

Train Image - 58.97 66.14 62.34
Dev Image - 60.39 68.97 64.40
Test Image - 56.37 64.46 60.14

Train Text w/ 52.84 37.93 44.16
Dev Text w/ 52.98 39.61 45.33
Test Text w/ 53.15 41.22 46.43

Train Text w/o 52.46 37.60 43.80
Dev Text w/o 52.50 39.39 45.01
Test Text w/o 53.12 41.11 46.35

Table 2: Performance of Text and Image Evidence Re-
trieval on Training, Development, and Test Sets. (%)

We show the performance of text and image evi-
dence retrieval on training, development, and test
sets in Table 2. We can see that the performance of
both image and text evidence retrieval is very low,
indicating the difficulty of both tasks. Taking text
evidence retrieval as an example, the model needs
to retrieve 2.6 text evidence on average for each
claim from a collection of 2,792,639 sentences.
The performance of image evidence retrieval is
higher than text evidence retrieval, especially for
recall, which is understandable as the number of
text evidence is usually higher than that of image
evidence. Finally, we have also done the ablation
study to explore the effect of the re-ranking mod-
ule mentioned in the text retrieval model (Section.
3.1.1). Although we do observe some improve-
ments after adding the re-ranking module, the im-
provements are tiny.

4.2 Claim Verification

For claim verification, the model needs to detect
the stance from the text and image evidence regard-
ing a particular claim, and predict a truthfulness
label for the claim, i.e., refuted, supported, and NEI
(not enough information). To evaluate the impact
of each type of evidence to claim verification, we
design ablated models of our approach by consid-
ering the text evidence only, image evidence only,
or no evidence. In addition, we also compare the
performance of our based on the system-retrieved
evidence and the gold evidence to show the impact
of evidence retrieval.

Table 3 shows the results. Without considering
any evidence, the model can still achieve a decent F-
score on claim verification due to the fact that some
refuted claims, such as “Paying taxes is optional!!”,
contain obvious clues or are against common sense
so that the model can directly predict the truth-
fulness based on the claim itself. By adding text

Setting F-score

w/o Evidence 33.98

w/ Text Evidence (Gold) 45.18
w/ Image Evidence (Gold) 40.93
w/ Text and Image evidence (Gold) 49.43

w/ Text Evidence (System) 41.03
w/ Image Evidence (System) 38.68
w/ Text and Image evidence (System) 46.78

Table 3: Performance of Claim Verification based on
Gold and System-retrieved Evidence. (%)

and/or image evidence, the performance of claim
verification can be boosted, which demonstrates
the usefulness of the evidence. The text evidence
provides more significant gain than images evi-
dence due to two reasons: (1) for about 30% of
the claims (623 out of 2,001) in the evaluation set,
they only have text evidence without any associ-
ated image evidence, while our approach always
returns the top-5 most relevant texts and images as
evidence, thus it may introduce noise; (2) it’s also
intuitive that texts usually carry more information
than images. However, we also observe many ex-
amples that the image evidence complements the
text evidence. For example, for the claim #1 “San
Francisco had twice as many drug overdose deaths
as COVID deaths last year” in Figure 4, its im-
age evidence plays a crucial role since we can only
obtain the number of drug overdoes deaths from
the image. According to the results, there is still
huge room for further improvements. We organize
important error types and discuss them in detail in
the Section 5.2.

4.3 Explanation Generation

We fine-tune BART based on a pre-trained
bart-large5 checkpoint (Wolf et al., 2019) to gen-
erate the ruling statement, and use ROUGE (Lin,
2004), BLEU (Papineni et al., 2002), and
Bertscore (Zhang et al., 2019) as the evaluation
metrics. The BERT-based6 classifier is pre-trained
on the gold explanation to evaluate the truthfulness
label and reach an F-score of 0.865 after 49 epochs.
During training the generation model, we fix the
classifier. We set the reward coefficient weight λ as
1. To evaluate the impact of the evidence retrieval
and claim verification on explanation generation,

5https://huggingface.co/facebook/bart-large
6https://huggingface.co/bert-base-uncased



Setting Model Rouge1 Rouge2 RougeL BLEU BERTScore

Gold Evidence w/o Generation - 36.47 19.04 23.78 16.25 86.60
System Evidence w/o Generation - 26.36 7.15 15.35 5.11 83.32

Gold Evidence + Gold Truthfulness BART-large 46.21 26.52 35.59 16.73 86.67
Gold Evidence + System Truthfulness BART-large 39.93 22.43 27.58 16.70 86.67
System Evidence + Gold Truthfulness BART-large 28.75 10.73 17.33 7.03 83.31
System Evidence + System Truthfulness BART-large 28.74 10.72 17.29 7.00 83.31

Table 4: Performance of Explanation Generation. (%)

we compare the performance of our approach based
on gold evidence and/or gold truthfulness with the
system-based evidence and truthfulness. Note that
we only train the model based on gold evidence
and truthfulness but perform inference by taking
different types of evidence or truthfulness as input.

The results are shown in Table 4, from which we
have several observations: (1) without generation,
the explanation is directly from the concatenation
of all the evidence. The explanation may contain all
the necessary information but is not interpretable
to humans as the sentences are not connected co-
herently or logically. (2) evidence retrieval has a
more significant impact on explanation generation
than claim verification, which is understandable
as the evidence carries most of the content in the
explanation and the truthfulness is usually implic-
itly implied when comparing the evidence and the
input claim.

5 Discussion

5.1 How Text and Image Evidence
Complement Each Other?

We explore how each modality contributes to the
overall claim verification.

Impact of Text Evidence Using only image evi-
dence, the model gives 1,182 false predictions for
claims. By further adding text evidence, 536 of
these 1,182 claims can be correctly predicted. In
Figure. 4, for the claim #2 “Massachusetts Gov.
Charlie Baker directed National Guard troops to
help transport K-12 students to school”, the image
evidence can only show “one guard is driving”, and
the text evidence can further confirm that it is to
help with school transportation.

Impact of Image Evidence In the text evidence
only setting, 1,097 claims are incorrectly predicted.
By further considering image evidence, 252 of
them are correctly predicted. For example, for the
claim #3 “A photograph shows actor Tom Cruise

sitting on top of the Burj Khalifa skyscraper with-
out a harness” in the Figure. 4, the text evidence
only describes the height of the building without
explicitly mention the actor Tom Cruise, while the
image evidence can show us Tom Cruise was sitting
on top of a building.

5.2 Remaining Challenges

5.2.1 Claim Verification
We randomly sampled 300 claims that are not cor-
rectly verified. By analyzing their input claims, re-
trieved text, image evidence and the predicted truth-
fulness, we identify the following remaining chal-
lenges for the task of multimodal fact-checking:

Text Evidence Retrieval: The evidence retrieval
we proposed is based on similarity matching. How-
ever, in many cases, it’s more important to find
evidence that is relevant to the claim but indicates
different opinions or is against the claim. This is
especially important to retrieve the evidence for the
false claims. For example, given an input claim

“If you look at some of these places that (reduced
police funding), they’ve already seen crime go up”,
the retrieval model missed a piece of important
evidence “Murder and gun violence was already
up nationwide in 2020 before cities reduced police
funding. Cities that did not cut police budgets also
saw murder go up in 2020”, which is against the
claim and has low similarity to the claim but is
important to the prediction of the truthfulness. In
addition, for many claims, their evidence comes
from the comprehension of long paragraphs instead
of several sentences. Though our approach success-
fully retrieves several relevant sentences, they are
not enough to cover all the background and indicate
the truthfulness of the claims.

Deep Visual Understanding: For some claims,
their image evidence is charts, tables or even maps.
The current visual understanding techniques, such
as CLIP, cannot deeply understand the content and



Figure 4: Examples of Multimodal Fact Checking



semantics of such images. For example, given the
claim #4 “We had the highest number of (military)
sexual assaults ever reported in the last year and
we had the lowest conviction rate and the lowest
prosecution rate” in the Figure 4, in order to deter-
mine the truthfulness of this claim, the model needs
to analyze the trend of the three curves presented
in the image evidence, which is very challenging
for the current visual encoders. In addition, many
image evidence also contains the text. Without per-
forming Optical Character Recognition (OCR), the
current visual encoders cannot fully understand the
content of the images.

Cross-modality Reasoning: Both text evidence
and image evidence can provide complementary
information to verify the truthfulness of the
input claims. This requires deep cross-modality
reasoning and evidence fusion. For example, in
the claim #8 “The man next to Mike Pompeo in
a November 2020 photo is the guy the Trump
administration helped get out of jail in 2018
and who is now the president of Afghanistan” in
Figure. 4, we need to know “The man next to Mike
Pompeo” is “Abdul Ghani Baradar” by referring
to the image evidence, and then confirm the claim
by referring to the text evidence which is about

“Abdul Ghani Baradar”.

Other Complex Reasoning: Many claims also
require various types of complex reasoning, such as
mathematical calculation, commonsense, etc. For
example, the model needs to understand that “14.2
billion” is “approximately 15 billion”, “5,000” is
larger than “1,500”, “2018, 2019 and 2017” is “3
years”, “4th of July” is the “Independence Day”. In
addition, the model has difficulty in dealing with
the claims that are partially supported and refuted.
For example, in the claim “Amy Klobuchar vows
to resettle 500 percent more refugees”, the cor-
rect part is “Amy Klobuchar vows to resettle more
refugees”, and the wrong part is “500 percent” be-
cause she has not specified how many refugees.

5.2.2 Explanation Generation
We also sample 50 system-generated explanations
from the evaluation set and analyze their error types
as follows.

Limited Encoding and Decoding Length: Our
approach is based on the pre-trained language mod-
els, such as BERT, CLIP, BART, which can only

encode or decode a limited length of the sequence.
While in our dataset, some evidence and ruling
statements exceed the maximal length. In this case,
we have to truncate the sequence and lose part of
information.

Missing Evidence: As we construct the back-
ground document and image corpus based on the
source links listed in the Snopes and PolitiFact
websites, it’s possible that some evidence used in
the ruling statement is not included in the back-
ground document or image corpus. For example,
given the claim “Opening the schools is a local
determination, but it is not a state determination”,
the gold explanation contains the information “If
districts do not work with the state, and seek its
approval for their reopening plans, they could lose
state funding” which is not covered in any of the
background documents. In addition, our current ex-
planation generation approach only leverages text
evidence while image evidence can also provide
complementary information.

Logical Coherence: One critical challenge for
explanation generation is to determine the logical
connection among the evidence sentences and orga-
nize them coherently. For example, given the claim
“Nike donated three times more to Republicans than
Democrats during the 2018 federal election cycle,
up to August 2018” and its truthfulness label “NEI”,
our explanation generation approach failed to cor-
rectly organize the following two evidence: “This is
consistent with our history as a non-partisan com-
pany”, “Nike and its employees have spent more
than three times as much supporting Republicans”.

6 Related work

Multimodal Fake News Detection and
Fact Checking Most previous benchmark
datasets (Wang, 2017; Thorne et al., 2018;
Hanselowski et al., 2019; Kotonya and Toni, 2020;
Augenstein et al., 2019; Alhindi et al., 2018;
Vlachos and Riedel, 2014; Nørregaard et al.,
2019) for fake news detection or fact-checking
are mainly based on text. As only information is
naturally in multi-modality, recent studies start
to take images (Boididou et al., 2015; Zlatkova
et al., 2019; Shu et al., 2020; Nakamura et al.,
2019; Jindal et al., 2020; Reis et al., 2020; Fung
et al., 2021; Mishra et al., 2022) and videos (Pa-
padopoulou et al., 2018b) into consideration. Most
of the methods for multimodal fake news detection



or fact-checking are based on cross-modality
consistency checking (Tan et al., 2020; Zhou
et al., 2020; Song et al., 2021a; Wang et al.,
2021; Abdelnabi et al., 2021) or computing a
fused representation of multimodal (textual +
visual) information for final classification (Khattar
et al., 2019; Jin et al., 2017; Song et al., 2021b;
Wang et al., 2018, 2022). Compared with these
studies, our work considers the end-to-end and
explainable fact-checking which requires the
system to automatically select relevant sources
from a large collection of source document and
images, and provide a detailed ruling statement
to explain the truthfulness prediction of the input
claim.

Explainable Fact-Checking Providing explana-
tions to the model predictions is beneficial for hu-
mans to understand the truthfulness of the claims.
Current explainable fact-checking studies can be di-
vided into three categories. The first is based on the
evidence (Thorne et al., 2018; Alhindi et al., 2018;
Hanselowski et al., 2019; Fan et al., 2020) that is
used for claim verification. However, the evidence
usually consists of several individual sentences ex-
tracted from a large collection of documents, which
may still be hard for humans to interpret. The sec-
ond is to incorporate external knowledge graphs
to compute a set of semantic traces that start from
the claim (Gad-Elrab et al., 2019). The semantic
traces will serve as explanations to justify the truth-
fulness of the claims. The third is to apply natural
language generation to generate a paragraph to de-
scribe the reasoning process (Zhang et al., 2021;
Atanasova et al., 2020; Kotonya and Toni, 2020),
which is the most interpretable to humans. Our
work is similar to this line of research, however, we
consider a more realistic setting where the system
needs to sequentially or jointly perform all three
sub-tasks including evidence retrieval, multimodal
fact verification and explanation generation.

7 Conclusion

We introduce MOCHEG, an end-to-end multimodal
fact-checking and explanation generation bench-
mark dataset which consists of 21,184 claims anno-
tated with truthfulness labels, together with a large
collection of web sources including 61,475 articles,
108,673 images, 903 videos and 4661 tweets. We
explore the state-of-the-art neural architectures to
set up the baseline performance on three sub-tasks,
including multimodal evidence retrieval, claim val-

idation and explanation generation. Experimental
results show that the performance of all three sub-
tasks is still far from enough. For future work, we
will explore more advanced techniques to under-
stand the visual information from image evidence
and incorporate it into the explanation generation.
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